Chapters 8 Study Questions

1. Chromium reacts with hydrochloric acid in a single replacement reaction. The balanced equation is:

$$
2 \mathrm{Cr}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{CrCl}_{3}(a q)+3 \mathrm{H}_{2}(g)
$$

a) How many moles of HCl are needed to produce 1.60 moles of CrCl_{3} ?
b) How many grams of Cr are needed to produce $3.20 \mathrm{~g} \mathrm{H}_{2}$?
c) In an experiment, 10.2 grams of CrCl_{3} are produced starting from 8.30 grams of HCl . What was the theoretical yield and the percent yield in this experiment?
d) When 6.0 moles of Cr are combined with 12.0 moles of HCl , which reactant is limiting?

How many moles of excess reactant are left over?
e) How many grams of CrCl_{3} are produced starting from 13.0 g of Cr and 43.8 g of HCl ?
2. Octane undergoes complete combustion to form carbon dioxide and water.

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(l)+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(l)
$$

a) How many moles of oxygen are required to burn 1.00 mole of octane?
b) What mass of CO_{2} is produced when 4.77 grams of oxygen gas are used up?
c) How many grams of CO_{2} are produced from $11.4 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$ and $32.0 \mathrm{~g} \mathrm{O}_{2}$?
d) In an experiment, $2.28 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$ produced 2.43 g of $\mathrm{H}_{2} \mathrm{O}$. What is the theoretical yield (the amount of $\mathrm{H}_{2} \mathrm{O}$ expected from $2.28 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$)? What is the percent yield?

Summary of Chapter 8: Quantities in Chemical Reactions

Calculations from a balanced chemical equation: mole relationships between reactants and products mass relationships between reactants and products
limiting reactant
theoretical yield
actual yield
calculating percent yield enthalpy of reactions

1. a) $1.60 \mathrm{~mol} \mathrm{CrCl}_{3} \times \frac{6 \mathrm{~mol} \mathrm{HCl}}{2 \mathrm{~mol} \mathrm{CrCl}_{3}}=4.80$ moles HCl
b) $3.20 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Cr}}{3 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{52.0 \mathrm{~g} \mathrm{Cr}}{1 \mathrm{~mol} \mathrm{Cr}}=55.0 \mathrm{~g} \mathrm{Cr}$
c) $8.30 \mathrm{~g} \mathrm{HCl} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.46 \mathrm{~g} \mathrm{HCl}} \times \frac{2 \mathrm{~mol} \mathrm{CrCl}}{3} \frac{158.35 \mathrm{~g} \mathrm{CrCl}_{3}}{6 \mathrm{~mol} \mathrm{HCl}}=12.0 \mathrm{~g} \mathrm{CrCl}_{3}$ theoretical yield $=12.0 \mathrm{~g} \mathrm{CrCl}_{3}$
$\%$ Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%=\frac{10.2 \mathrm{~g}}{12.0 \mathrm{~g}} \times 100 \%=85.0 \%$
d) 6.0 moles $\mathrm{Cr} \times \frac{2 \mathrm{~mol} \mathrm{CrCl}}{3} 10.0 \mathrm{moles}_{\mathrm{CrCl}_{3}}^{2 \mathrm{~mol} \mathrm{Cr}}$
12.0 moles $\mathrm{HCl} \times \frac{2 \mathrm{~mol} \mathrm{CrCl}_{3}}{6 \mathrm{~mol} \mathrm{HCl}}=4.0$ moles CrCl_{3}; therefore, HCl is limiting
4.0 moles $\mathrm{CrCl}_{3} \times \frac{2 \mathrm{~mol} \mathrm{Cr}}{2 \mathrm{~mol} \mathrm{CrCl}} 3 \mathrm{Cr}$. 4.0 moles Cr used up.
6.0-4.0 $=2.0$ moles Cr left over.
e) $13.0 \mathrm{~g} \mathrm{Cr} \times \frac{1 \mathrm{~mol} \mathrm{Cr}}{52.0 \mathrm{~g} \mathrm{Cr}} \times \frac{2 \mathrm{~mol} \mathrm{CrCl}_{3}}{2 \mathrm{~mol} \mathrm{Cr}} \times \frac{158 \mathrm{~g} \mathrm{CrCl}_{3}}{1 \mathrm{~mol} \mathrm{CrCl}_{3}}=39.5 \mathrm{~g} \mathrm{CrCl}_{3}$
$43.8 \mathrm{~g} \mathrm{HCl}^{\mathrm{H}} \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.5 \mathrm{~g} \mathrm{HCl}} \times \frac{2 \mathrm{~mol} \mathrm{CrCl}_{3}}{6 \mathrm{~mol} \mathrm{HCl}} \times \frac{158 \mathrm{~g} \mathrm{CrCl}_{3}}{1 \mathrm{~mol} \mathrm{CrCl}_{3}}=63.2 \mathrm{~g} \mathrm{CrCl}_{3}$
since $39.5 \mathrm{~g}<63.2 \mathrm{~g}, 39.5 \mathrm{~g} \mathrm{CrCl}_{3}$ is produced.
2. a) $1.00 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18} \quad x \frac{25 \text { mole } O_{2}}{2 \text { mole } C_{8} H_{18}}=12.5 \mathrm{~mol} \mathrm{O}_{2}$
b) $4.77 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \text { mole } \mathrm{O}_{2}}{32.0 \mathrm{~g} \mathrm{O}_{2}} \times \frac{16 \text { mole } \mathrm{CO}_{2}}{25 \text { mole } \mathrm{O}_{2}} \times \frac{44.0 \mathrm{~g} \mathrm{CO}_{2}}{1 \text { mole } \mathrm{CO}_{2}}=4.20 \mathrm{~g} \mathrm{CO}_{2}$
c) $11.4 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \times \frac{1 \text { mole } \mathrm{C}_{8} \mathrm{H}_{18}}{114 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{16 \text { mole } \mathrm{CO}_{2}}{2 \text { mole } \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{44.0 \mathrm{~g} \mathrm{CO}_{2}}{1 \text { mole } \mathrm{CO}_{2}}=35.2 \mathrm{~g} \mathrm{CO}_{2}$
$32.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \text { mole } \mathrm{O}_{2}}{32.0 \mathrm{~g} \mathrm{O}_{2}} \times \frac{16 \text { mole } \mathrm{CO}_{2}}{25 \text { mole } \mathrm{O}_{2}} \times \frac{44.0 \mathrm{~g} \mathrm{CO}_{2}}{1 \text { mole } \mathrm{CO}_{2}}=28.2 \mathrm{~g} \mathrm{CO}_{2}$
Since 28.2 g is less than $35.2 \mathrm{~g}, 28.2 \mathrm{~g} \mathrm{CO}_{2}$ are produced.
d) $2.28 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \quad \times \frac{1 \text { mole } \mathrm{C}_{8} \mathrm{H}_{18}}{114 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{18 \text { mole } \mathrm{H}_{2} \mathrm{O}}{2 \text { mole } \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \text { mole } \mathrm{H}_{2} \mathrm{O}}=3.24 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

The theoretical yield is $3.24 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

$$
\text { percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%=\frac{2.43 g}{3.24 g} \times 100 \%=75.0 \%
$$

